ReFoRM

 

Myocardial Remodeling and Regional Function (ReFoRM)

RESEARCHERS INVOLVED

Permanent Researchers Associated researchers Non-permanent researchers

Claire Maufrais-Buisson (PhD, MCU)

Philippe Obert (PhD, PU)

Stéphane Nottin (PhD, MCU-HDR)

Sandrine Gayrard (Tech 30 %)
Céline Portalier (Assist tech. 30%)

Falah Aboukhoudir (MD, Cardiologist)

Roland Carlioz (MD, Cardiologist)

Cécile de France (MD, Cardiologist)

Antoine Grandperrin (PhD Student)

Matthieu Josse (PhD Student)

Justine Paysal (MD, PhD Student)

Anthony Birat (PhD Student)

Christophe Hédon (MD, PhD Student)

OBJECTIVES

This group aims to assess myocardial remodeling and regional function in response to prophylactic approaches including physical exercise and nutrition in both healthy subjects (sedentary people or athletes) and patients presented with cardiovascular and cardiometabolic diseases. Based on up-to-date cardiac imaging technologies and biomarkers, researchers want to get insight into a comprehensive approach of the myocardial responses (at rest and under pharmacological or physiological stresses) to acute and chronic exercise combined, or not, with nutritional strategies. Using skills and knowledge from the other groups of the unit, we can propose a translational research approach (from cell to human) to analyze myocardial remodeling and regional function both in humans and rodents.

 

MAIN RESEARCH INTERESTS

The researchers of this group have the following main research interests:

  • To appreciate the impact of metabolic diseases (e.g. diabetes, obesity) on the myocardial remodeling and regional function and the benefits of exercise training and/or nutritional strategies in this population,
  • To understand the physiologic cardiovascular response to acute physical exercise and different types of exercise training (e.g. endurance, resistance) in healthy people,
  • To evaluate the potential benefits of nutritional strategies and exercise training on the prevention and rehabilitation in cardiac disease (e.g. coronary artery disease, heart failure, cardiorenal disease)

Figure 1. Outlines of the objectives and methods

 

MATERIALS AND METHODS

Clinical study:

  • High resolution echocardiography at rest and during stress conditions (exercise, dobutamine, …):
    • Myocardial remodeling
    • Ventricular and atrial normal myocardial strains
    • Twist-untwist mechanism
    • Intra/interventricular synchronism
    • Myocardial work
  • Biological markers (blood and urinary samples):
    • Glucide and lipid profiles
    • Inflammatory cytokines
    • Métabolomics
    • Oxidative stress
    • Micro-RNA
  • Heart rate variability
  • Cardiopulmonary exercise testing:
    • Pulmonary gas exchange (including maximal oxygen uptake, VO2max)

Experimental study:

  • High resolution echocardiography in rodents:
    • Myocardial remodeling
    • Global systolic and diastolic function
    • Ventricular and atrial normal myocardial strains

INTERNATIONAL AND NATIONAL COLLABORATIONS

  • UMR 6602 – CNRS CaVITI, Thérapie Guidée par l’Image ; Institut Pascal ; Université Clermont Auvergne.
  • UMR CNRS 9267 – INSERM U1046 PhyMedEX, Université de Montpellier.
  • Universidad Miguel Hernández de Elche, Departments of Applied Biology and Biotechnology.
  • Université Clermont Auvergne, AME2P, F-63000 Clermont-Ferrand, France.
  • Fédération Française Triathlon, F-93210 Saint Denis, France.
  • Centre de Ressources et d’Expertise de la Performance Sportive (CREPS), F-03700 Bellerive-sur-Allier, France.
  • EA 3920 Prognostic markers and regulatory factors of cardiovascular diseases and Exercise Performance, Health, Innovation platform, Univ. of Bourgogne Franche-Comté, France.
  • EA 4267 PEPITE and Exercise Performance Health Innovation Platform, Univ. of Bourgogne Franche-Comté, France.
  • LIBM, Inter-university Laboratory of Human Movement Science, University Savoie Mont Blanc, Chambéry, France.

 

PRINCIPALES PUBLICATIONS

[1]       C. Philouze, P. Obert, S. Nottin, A. Benamor, O. Barthez, F. Aboukhoudir, Dobutamine Stress Echocardiography Unmasks Early Left Ventricular Dysfunction in Asymptomatic Patients with Uncomplicated Type 2 Diabetes: A Comprehensive Two-Dimensional Speckle-Tracking Imaging Study, J Am Soc Echocardiogr. (2018). https://doi.org/10.1016/j.echo.2017.12.006.

[2]       J. Serrano-Ferrer, G. Walther, E. Crendal, A. Vinet, F. Dutheil, G. Naughton, B. Lesourd, R. Chapier, D. Courteix, P. Obert, Right ventricle free wall mechanics in metabolic syndrome without type-2 diabetes: effects of a 3-month lifestyle intervention program, Cardiovasc Diabetol. 13 (2014) 116. https://doi.org/10.1186/s12933-014-0116-9.

[3]       J. Serrano-Ferrer, E. Crendal, G. Walther, A. Vinet, F. Dutheil, G. Naughton, B. Lesourd, R. Chapier, D. Courteix, P. Obert, Effects of lifestyle intervention on left ventricular regional myocardial function in metabolic syndrome patients from the RESOLVE randomized trial, Metab. Clin. Exp. 65 (2016) 1350–1360. https://doi.org/10.1016/j.metabol.2016.05.006.

[4]       C. Soullier, P. Obert, G. Doucende, S. Nottin, S. Cade, A. Perez-Martin, P. Messner-Pellenc, I. Schuster, Exercise response in hypertrophic cardiomyopathy: blunted left ventricular deformational and twisting reserve with altered systolic-diastolic coupling, Circ Cardiovasc Imaging. 5 (2012) 324–332. https://doi.org/10.1161/CIRCIMAGING.111.968859.

[5]       B.L. Share, A. La Gerche, G.A. Naughton, P. Obert, J.G. Kemp, Young Women With Abdominal Obesity Have Subclinical Myocardial Dysfunction, Canadian Journal of Cardiology. 31 (2015) 1195–1201. https://doi.org/10.1016/j.cjca.2015.02.004.

[6]       C. Maufrais, I. Schuster, G. Doucende, D. Vitiello, T. Rupp, M. Dauzat, P. Obert, S. Nottin, Endurance Training Minimizes Age-Related Changes of Left Ventricular Twist-Untwist Mechanics, Journal of the American Society of Echocardiography. 27 (2014) 1208–1215. https://doi.org/10.1016/j.echo.2014.07.007.

[7]       C. Maufrais, G. Doucende, T. Rupp, M. Dauzat, P. Obert, S. Nottin, I. Schuster, Left ventricles of aging athletes: better untwisters but not more relaxed during exercise, Clin Res Cardiol. 106 (2017) 884–892. https://doi.org/10.1007/s00392-017-1133-y.

[8]       O. Izem, C. Maufrais, P. Obert, T. Rupp, I. Schuster, S. Nottin, Kinetics of Left Ventricular Mechanics during Transition from Rest to Exercise, Med Sci Sports Exerc. 51 (2019) 1838–1844. https://doi.org/10.1249/MSS.0000000000002005.

[9]       J. Boissière, C. Maufrais, G. Baquet, I. Schuster, M. Dauzat, G. Doucende, P. Obert, S. Berthoin, S. Nottin, Specific left ventricular twist-untwist mechanics during exercise in children, J Am Soc Echocardiogr. 26 (2013) 1298–1305. https://doi.org/10.1016/j.echo.2013.07.007.

[10] A. Birat, P. Bourdier, A. Dodu, C. Grossoeuvre, A.J. Blazevich, V. Amiot, A.-C. Dupont, S. Nottin, S. Ratel, Effect of Long-Duration Adventure Races on Cardiac Damage Biomarker Release and Muscular Function in Young Athletes, Front Physiol. 11 (2020) 10. https://doi.org/10.3389/fphys.2020.00010.

[11] C. Maufrais, G.P. Millet, I. Schuster, T. Rupp, S. Nottin, Progressive and biphasic cardiac responses during extreme mountain ultramarathon, Am. J. Physiol. Heart Circ. Physiol. 310 (2016) H1340-1348. https://doi.org/10.1152/ajpheart.00037.2016.